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ABSTRACT

'\/Many multivariate interpolation schemes require as data values of
derivatives that are not available in a practical application, and that
therefore have to be generated suitably. A specific approach to this problem
is described that is modeled after univariate spline interpolation.

Derivative values are defined by the requirement that a certain functional be
minimized over a suitable space subject to interpolation of given positional
data. In principle, the technique can be applied in arbitrarily many
variables. The theory is described in general, and particular applications
are given in one and two variables. A major tool in the implementation of the
technique is the Bézier-Bernstein form of a multivariate polynomial. The
technique yields visually pleasing surfaces and is therefore suitable for
design applications. It is less suitable for the approximation of derivatives
of a given function.  _
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SIGNIFICANCE AND EXPLANATION
X This report addresses the problem of the interpolation of bivariate
E scattered data (x;,y;,%;) @&s they arise for example in the Computer Aided ;‘“‘
Geometrxic design of the.nhapo of a vehicle or in the representation of

measured data. Many technigquee proceed by triangulating the domain and then

defining the interpolant piecewise on each individual triangle. However, such »
interpolation schemes usually require as data values of derivatives that the
user is unable to supply. The report describes an approach to the generation -;

of such data from the given information. It is modeled after univariate cubic

e

spline interpolation and consists of choosing that interpclant which minimirzes

a suitable functional (modeling e.g. the strain energy of a c;amped elastic

plate) over a suitable function space, subject to interpolation. The user has i

some choice in the selection of the functional. The technique has the

advantage of yielding visually pleasant surfaces. It has the drawback that
. the derivative generation is a global process that depends upon all given P

data. The scheme can be considered either a method of constructing a once

differentiable interpolant to positional data, or a method of constructing

derivative values through second order that can then be used to generate a

twice differentiable surface by employing another interpolation method. The

Ancer
basic ideas are also illustrated in the univariate context. L}pu
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The responsibility for the wording and views expressed in this desdriptive 0. _
summary lies with MRC, and not with the author of this report.
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MULTIVARIATE SCATTERED DATA DERIVATIVE GENERATION BY FUNCTIONAL MINIMIZATION
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*
Peter Alfeld

1, INTRODUCTION

|
b
{
|
r
%I Many multivariaste interpolation schemes require values of derivatives as »
data vhich are not available in a practical application. PFor examples of such '
L schenes, see, e.g., Barnhill and Farin, 1981, the papers by Alfeld and by

Alfeld and Barnhill, and other papers in the proceedings edited by Barmhill » )

'and Ninllén. 1984, and the finite element literature. Thus, if an

E‘ interpolation problem is to be solved, derivative data must be generated from

%I existing positional data. : , »
In this paper, a particular technique for dérivativc generation is

described which is modeled after univariate spline interpolation. In the

H! univariate case, it is well known that the interpolating spline minimizes & i-

veriational principle, and it has been recognized (see Dube 1975, Duchon 1976,

and Nielson 1983) that a similar proﬁerty is desirable also in the

W

multivariste context. Minimizing an appropriste functional over as large a

space as possible has the drawback that ususally this is difficult

computationally and that in general the result will not be s function with a
sisple and convenient (e.g. polynomial) structure. In our approach, a simple L
structure {s forced by choosing the interplants from a class of piecewise

polynomial functions (defined over a tesselation into simplices, i.e.

intervals or triangles) such that some user specified functional is - -4
minimized. The apprqach is related to the finite element method for the
solution of variational problems, and indeed many computational techniques
familiar in that context can also be used for derivative generation. The
technique is mathematically well founded and yields visually pleasing
surfaces. This makes it suitable for desigu purposes. Its main drawdback is

that the derivative generation is a global process that requires the =

*
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construction and solution of a iarge sparse systeu of linear equations. After
the preprocessing stage of derivative generation, however, the schemes are
local, i.e. the evaluation of the interpolant requires data only on that
sinplex in which the data point resides .

The techniques presented here can be viewed in at least two different
ways. The point of view that is reflected in the title 1s that they simply
generate derivative values at points. Also possible is the view that the
derivetive generation and the interpolation are an entity that allows the user
to construct lnootﬁ interpolants to positional data, without requiring user
specified derivative values. From that point of view, the fact that the
derivative generation may be divorced from the interpolation, and derivatives
may be used for separate purposes (e.g. generating a smoother surface), is a
serendipitous byproduct of the technique.

In traditional numerical analysis, one usually thinks of an interpolation
schene as a means of approximating an underlying smooth function. This,
however, is often inappropriate in multivariate applications.. Rather, the
sttitude usually taken by designers and engineers is that one is given some
data with the objective of passing a visually pleasing surface through the
dats. Indeed, in s design problem, the primitive function is the object to be
croated, rather than reproduced or approximsted. The designer may even change
the positional data in order to get a better surface. This is why the title
of this paper contains the term "generation” rather than “"estimation™. We are
iaterested not in ectiua:ing derivatives that have no meaning in the context
of the given problem, but rather in trying to determine free parameters in a
vay that would satisfy a designer or engineer. This attitude is the main
reason vhy the question of errors is not addressed in this paper.

The paper is organized as follows:




In section 2, we develop the theoretical frame-work for the technique.
We define the notation and address the quelgion; of invariance of the
interpolants under certain geometrical transformations, of existence and
uniqueness of the minimizing interpolant, and of the maximum degree of the
polynqnials that are reproduced exactly by the method. This frame-work
applies to functions of arbitrarily many variables.

In section 3, we consider the univariate case. We describe (piecevise
cubic and quintic) Hermite interpolation and give formulas for picking the
values of the deriGativeo 80 as to minimize the norm of certain derivatives of
the interpolant. These include natural cubic and quintic splines as special
cases.

In section 4, we go on to functions of two variables. This section 1i
the heart of the paper. We consider one basic interpolant (defined over a
triangulation), namely s piecewise quintic ct interpolant that interpolates
to gtad§ent| and Hessians (as well as to position). The interpolant has been
long known in the finite element context.

In all cases, positional data are concideted given, and derivative values
are considered parameters to be picked so as to minimize a functional. The
functional in all cases is the L, norm of some suitably picked set of
derivatives.

In'lcction 5, we illustrate the technique with some bivariate

exsmples.
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2. THE FRAME-WORK
. In this section, we define some notation that will be used in the
sequel. We also describe the approach in general, and observe some simple but
fundamental properties. The following sections can then be considered
. . specific examples for our general approach. Some of our definitions and
concepts could be formulated more generally, but we restrict them to
situations as they arise in practical applications.
. We denote by D a polyhedral region in nd that has been tesselated
into simplices. We do not address the question of how this tesselation may be
accomplished. See Little, 1983, for some answers to this question.
p_ Our interpolant will be piecewise polynomial (so that integrations can be
catr_ied out easily). We denote by B: a space of functions that are
polynomial on each of the simplices in D . and that are globally m times
a ' continuously differentiable. The space contains all polynomials of degree up
‘ to and including n « In one variable, B: will not contain any higher
. degree polynomials, but in more than one vnﬂable, B: may contain soume
i higher degree polynomials, depending upon the application.
We assume that our interpolant is required to interpolate
to N dats d:l defined by linear functionals, thus, 1f p denotes the
»l__ intetpoiant »
(2.1) : Lip = d , 1 = l,..,N )
»
In most applications, the Li will be point evaluations at the vertices J
of the tesselation. We also assume that the interpolant contains free )
| B paraseters p, that we have to specify. In most applications, these o A
1
3 - .
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parameters will be values of derivatives at points. We express the link

between the interpolants and the parameters in terms of linesr functionals:
(202) Pip - pi 9 1 - 1.....“ [ ]

We collect the data cl1 into the vector d and now define the affine

space that contains all candidates for the final interpolant by
L : m
A(d) = {a e B, : (2.1) and (2.2) héld vhere o, ¢ R }

Fundamental to our technique is the minimization of certain

derivatives. We consider the differentiation operator

k 2
p%q = r G2 -
110dgs eeey 4 € {1,000,d4} T4, Ty i,

We also use the functional defined on B: by

2.3) Fq = t [0%

fr}r
Here, the summation is over all simplices in the tesselation of D and
the integration is over an individual simplex. For example, if k = 1 , we
obtain the Eucledian norm of the gradient, and if k = 2 , we obtain the
Frobenius norm of the Hessian of q .
In the now defined context, of the infinitely many interpolants contained

in A:(d) , we choose that one that minimizes F¥ .

T ——
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The following theorems cover some of the relevant properties of the above

approach.

Theorem 1: There exists a unique minimizer of F¥ tn A:(d) for
all d 4if and only if the only function in A:(O) piecewisge of

degree < k 1is the zero function.

Remark: Thus we reduce the question of existence and uniqueness for the
minimization problem to a similar question for a much simpler Lagrange

interpolation problem.

Theorem 2: If p minimizes Fk over A:(d) and p 1is unique,

then p 1is invariant under translations, isotropic rescalings, and rotations.

Theorem 3: If p minimizes F¢ over AN(d) , and p dis
unique, k <n , and d1 - Liq for some pqunomial q of degree <k ,

then p=q .

Proof of Theorem 1: The functional FX 1g quadratic and minimizing it

requires the solution of a linear system. If d = O , then the linear system

> is also homogeneous (since the zero function is a solution). Moreover, the
coefficient matrix is independent of d° (as can be seen by writing the

_ interpolant in cardiﬁal form). A linear system with arbitrary right hand side

- possesses a unique solution if and only if the corresponding homogeneous
linear system possesses a unique solution. If the zero function is the only
function in A: plecevwise of degree < k , then the solution is unique as any

lf interpolant of a higher degree would yield a non-zero value for "o,

’ e
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Proof of Theorem 2: We eoﬁoider s change gt varisbles
s = Lx+d where LlL - azt for some constant a, , with I being the
ddentity matrix. This class of transformations includes translations
(L = 0), isotropic rescaling (L = oI , b = 0), and rotations
(a=1,b5=0) , We have to qhq:v that the solution of the minimization

prodlem is independent under this change of variables.

Let p(x) = p(Lx+c) . Wa will show that
(2.4) : Dk; - azkbkp .

Thus the value of the functional F"'p is proportional to Fk; vhich
establishes the theorem.
To see (2.4) requires a simple but messy manipulation of
summations. D‘? is obviously independent of b , 80 we may assume b =0 ,
We denote the (1,j) entry of L by L, g " We next see by induction that
k k-

2 p(lx + b) = L T L, —B——— (Lx +b) .

3811 uizoOO axik jl.....jk r=] 1:’! leszoo-‘Jk

In the following, subscripts of p denote partial derivatives, and all

evaluations take place at Lx+b.

‘Wi
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Using this relation, we obtain:

3
k= 9°p(Lxtb) 2
Dp =y .50, T c..m )y -
1°*2 k% 1,

o - b L ses L L P P
Bpesely ¥l Wl Wk Wpeeew vpeeey
j\}lo.o;k

} 1‘.. k

) - z zl 21. L see

_ weeew 33 wd) 35 Tl wi,

\ﬁooo\i
2k )2 - 2ok,

L L - L
N e N L R L N

Proof of Theorem 3: Suppose that the data dk are generated by a
polynomial q of degree <k <n . Then q ¢ A:(d) and kq assumes the

ainimum possible value zero. Since the minimizer is unique we have that

P*q.

In the sequel, we will make use of a technique familiar from the finite
element technique (see, e.g., Strang and Fix, 1973, p.28). Rather than
integrating over the entire domain D and then differentiating with respect
to the parameters, Qa integrate over an individual simplex (element),
differentiate with respect to those parameters that contribute nontrivially on
the element, and in this fashion obtain-an element stiffness system. The
elesent stiffness syétems then have to be assembled into the global stiffness

system, and that system has to be solved. We assume the assembly technique to

be familiar. Also, we will not address the question of how the (large,

sparse, positive definite) global stiffness system may be solved except to

point out that this is usually done by direct methods and that sophisticated T
software for this purpose exists (see George and Liu, 1981), ]
-8- , LB




3. UNIVARIATE APPLICATIONS

3.1 The c‘ Case

Suppose we are given data (xn.f“) »,a® 1 ...,N, where

s =x < X, € oo ¢ Xy =}

We denote the interval [xn"n+ll by I, and write h = x . ,-x, (for

n=1,2,...,N-1) . Our objective is to interpolate to the given data, i.e. we

are looking for a function s , say, that satisfies
(3.1) .(xn) = fn, for all n=1,2,,..,N

In this subsection, we require s to be in the space B; » » 1e€: the
space of all functions that can be represented as a cubic polynomial on each
subinterval 1, , and that are once continuously differentiable on
I: = {a,b]. In the notation of section 2, Qe let d,=f, and

Py " p'(xi) where p 1is the interpolant. The affine space A; is the
space of sll functions in B; , that satisfies the interpolation condition

(3.1). The functional F (for k = 0,1,2,3) becomes

Nl x
(3.2) Fp= 1 [ M)«
i=} 1

-9~
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To make the notation of the foliowlng results more compact, we consider the
following more general functional |
- 1 wFp
k=0

vhere the w, are weight factors that can be chosen by the user. For
instance, the choice wp = 1, Vg "W = w; = 0 yields the natural
interpolatory cubic spline (which, remarkably, is twice continuously
differentiable evefywhere onI).

The differentiation and integration on an individual subinterval was
carried out using the symbol manipulation language REDUCE (Hearn, 1983). We

obtain the element stiffness matrix

31 %12 r

821 %22

1
F2

A = ¢
n

and the right hand side g, " ¢ '

where

-10-




& 2
8, "8 " 4hnv° + 56hnw1 + 1680h vy + 15120 vy

n

(] 4 2
82 "8 " -3hnub - lbhnvl + 860hnw2 + 15120 v,

(3.3)

4
+ 13!n)w° + ‘Zhn(£n+1-£n)wl

1 6
Hn*% { hn(Zanﬂ

h

' 2
+ 25200 (f , ~f v, + 30240(f =t Ivy]
r. =L (822 .+ 132 v, + a2nde - v
2 h n ntl n0 n okl "n’dl
2
+ 25200 (£, ~f v, + 30240(£ =L Ivy]

The formulas given in (3.2) and (3.3) can be assembled into a global
stiffness system whose solution defines a plecevise cubie Hcrﬁite interpolant
that minimizes the weighted derivatives defined in (3.2).

Of special interest is the case where w; = 1 and the other weights
equal zero. The element stiffness matrix is of rank one. The iloenbly
procedure yields a consistent system of Qquationo with rank deficiency one.
Thus there is a one parameter family of minimizing interpolants. That this is
80 can also be recognized directly: Any piecewise quadratic interpolant would
ainimize the norm of‘thc third derivative. A quadratic polynomial has three
degrees of freedom. On the first subinterval, we have to interpolate to two
function values, retaining one free parameter. On each subsequent interval,
we have to interpolate to two function values, and also have to match the

derivative of the quadratic on the left neighboring interval, using up sll

-11-
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thiree parameters. Thus, overall one parameter remains at our disposal. The
significance of this observation is that quaﬁratic precision of a cubic
Hermite scheme cannot be achieved by specifying the functional (3.2) alone.
Rather, an additional condition has to be imposed to eliminate the free
parameter. A simple approach would consist of determining the first
derivative at some grid point by using a quadratically precise interpolation
formula, and then requiring the minimizing interpolant to reproduce that

derivative.

3.2 The cz Case

The development in this subsection parallels that in the preceding one,
except that we consider interpolants in B§ , and also consider second
derivatives of the interpolant at the gridpoints as parameters. The
parameters at our disposal are d = p'(xn) and d .= p‘(xn) for

n*=1l,...,N . The affine space Ag is the space of all functions
in B§ that satisfy the interpolation condiiion (3.1).

Similarly as before, we consider the general functional

S

k=0

where the Fk are defined in (3.2). Carrying out the integration amnd

differentiation on a subinterval I and writing h = h, »
= - | ] LI [
df fnﬂ fn » Pyt P (xn) » Pyt P (xn)

yields the element stiffness equation:

-12-
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[ Saliatiadiie v~

81 42 %13 %14 |[Pn Lt
012 822 %3 %20 |Pn - )
a3 853 833 00| [Poer| T |8
814 %24 %34 %4 [Pl 8,

vhere

{ 8, " ( 832¢, + 288c; + 384c, + 64cy + 436c, + 216¢cg)h
il 8, " ( 69c° + 2e, ¢+ 22c, + 12c3 + 78°6 + 36c5)h2
83" (=532¢, - 18¢c, + 216c"+ S6c, + blde, + 216cs)h
8,, = ( 52, + 6, - 8¢, - 8c, - 72¢, - 36cs)h2

3
w( 6c,+ 2¢, + 6c2 + 3c3 + lbc‘ + 6cs)h

222 0 1

2
a3 * ( -Szco - 6c1 + 8c2 + 8c3 + 72°6 + 36cs)h

3
8, " ( Sco + 3 + €y = €y llc‘ - 6c5)h

833 = ( 832c0 + 288c1 + 384c2 + 6loc3 + 656c‘ + 216cs)h

8y " ( -69co - 21c1 - ‘22c2 l2c3 78ca 36cs)h

3
L ( 6co + 2c1 + 6c2 + 3c3 + 14“6 + 6c5)h

g " (-1812f - 3732fn)c0 + (270c1 + 600c2 + 120c3 + 900c‘ + 432:5)(fn+l - fn)

o+l

8 " h[(-lBlf“...l - 281fn)c0 + (lShcl + 3'0hc2 + 20hc3 + lSOhcA + 72hc5)(fn+l - fn)]

ﬁ g, = (37326, + 1812 Dc, + (270c) + 600c, + 120cy + 900c, + 432¢)(f ) = £))

8 " h[(°281fn+l - lalfn)co - (lShcl + 30hc2 + 20hc3 + lSOhca + 72hc5)(fn+l - fn)]

'w—r

n2 1 n2 -4 -6 -8
[ €o" T7736%0* C1” B30¥1 © " “35¥2e €37 6h W3, €47 4Bh Tug, e 12000 Tuy.
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h The following cases are of special interest:

w, = §. ,: The element stiffness matrix is non-singular. The unique

s i 12
solution for N = 1 is the linear interpolant. In general, the interpolant

minimizes the norm of the second derivative over the space Bg which contains
the interpolating natural cubic spline. Since the spline minimizes the norm
of the second derivative over the larger space containing all

plecevise cz funciiono that are once differeantiable at the grid points, the
piecewise quintic Hermite interpolant generated here actually is the

interpolating natural cubic spline.

w =" 631: The element stiffness matrix is of rank 3 « In the case of
N = 2 any interpolating quadratic will minimize the functional Hk « In the
case N = 3 | the interpolant is the unique interpolating quadratic vhich
renders C2 zero. The global stiffness matrix is non-singular whenever
N> 2 . In that case, the interpolant is the natural quintic spline, which,

remarkably, is four times continuously differentiadble everywhere in I .

'
N > 1 . Any piecewise cubic interpolant will render Hk zero.

- 561‘ The global stiffness matrix is rank deficiency 2 for any value - e

Vit

sny N> 1 . Any piecewise quartic interpolant will render the value of Hk

n The global stiffness matrix is of rank deficiency M3 for -

gero.

!
Y
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4. BIVARIATE APPLICATIONS

4.1 Barycentric Coordinates and the Bézier form of s Polynomial

Conceptually, we proceed as in the univariate case. However, the

algebraic manipulations grow much more complicated. The problem becomes
tractable only by using barycentric coordinates and the Bézier form of a

polynomial, We develop these concepts for the bivariate case. The

generalization to more than two varisbles is straightforward.
We restrict our attention to a general triangle T with vertices

V‘ R vz , and V3 , and express the location of a point P in T by

3 k |
(4.1) Pe ¢ bV, where § b, =1
o 11 ge1 1

The b, are the barycentric coordinates of P . They are determined
uniquely by the linear system (4.1) provided the underlying triangle T is
non-degenerate (vhich we will assume throughout).

We write a polynomial p of degree n in the Bezier fora

- n! r.e t
(4.2) P I  TTsfcl Srst P102%3

rhstten

~15-




The computation of the element stiffness system requires the following

two ingredients:
1. Spatial differentiation of the B;;tcr form of a polynomial.

2. Integration of the Bezier form over a general triangle.

We address each ingredient in turn:

4.1.,1 Spatial Differentiation of the Bézier form of a Polynomial,

~We let 0 denote a spatial differentiation operator, i.e. D -'%: for

some direction e . We consider the general Bézier form given by (4.2).

Then Dp is a polynomial of degree n-1 which can be written in the

form

Pp= o S 1 14
r+attan-1 risit! “ret 17273

It can be easily verified (see Farin, 1980) that

Db, + ¢ Db Dy

¢ '“l"‘rn,-.: 1% S et 02 Y S g 04l 3}

rst

-16-
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In our application, we are interested in differentiating p several
tiomes in different directions. Pbr later reference ve list the relevant
formulas. Let 91', 1 %1,...,k , denote spatial directional derivatives

(such as the partial derivatives with respect to x and y). Then

- (n-k)! (k)
D 0ynyee0yP T Treitl Sret P1P2%

ratt=n~k .
vhere
0 _
(6-3)_ Crst = “rat
and
A+ | o ygoD) 1) (1)
(b.lo)c“t (n 1>l°,+1,.,t°1+1”1 + cr,o+1,tvt+1b2 + °r,|.t+lvt+l b3]

for 1 =0,1,...,k «

4.1.2 Integration of the Bézier form over a General Triangle

Let p be defined by (4.2). The polynomial is defined in terms of
barycentric coordinates, but integration is required in terms of cartesian
coordinates. A simple change of variables (see, e.g., Lang, 1968, p.421)

yields for any integrable function £

~17-
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11-b
- l - -
{f £(P)dxdy l(T)g' g’ f(blvl+ bzvz +( bl bz)V3)dbzdbl

vhere T {s the triangle of interest and a(T) s twice the area of T .
Now let p denote a genersl Bézier representation given by (4.2).
Using the substitution b3 - l-bl—b2 s it 1is easy to see by induction and

integration by parts that

11-b

i i
pdb,db, = e T ¢
J J 2771 (n+1){(n+2) c+etten FBE

-18-
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4.2 A Q,q based Interpolant '

The underlying interpolant here {is cho.nizicr form of Qg , & reduced
quintic interpolant requiring function values, gradients, and Hessians at the
vertices of T . The overall pilecavise quintic interpolant is continuously
differentiable everywhere in the triangulation. For the derivation of en
explicit expression for Qg see Barnhill and Farin, 1981. Por completeness
and reference we list the relevant formulas, also introducing the notation

used in the sequel. The interpolant is given by:

- S L, 8.t
(4.5) @ I TTeteT drae P1P2%
wvhere:
(4.6) 4500 = F1» d9s0 = P dpos = Ty
d,. = ——p. 44 4, =Ly 44 4. =ty +a
10 " 75" F3,1 * 9500 * 4401 = 75 F2,1 * %500 * %140 " 75 T3,2 * Y050

(6.7)
d -_lp +4d d -'_l.p' +4 d ._l.r +4d
041 51,2 050 * “014 5°1,3 00S * “104 5 "2,3 005
Qo = - P, 424, ~d Qo # e B o 424, -
320 20 "33,1 410 500 * "230 20 "33,2 140 d050

-l - -l -
9032 " 70 F11,2 * 24041 ~ Y050 * %023 =70 F11,3 * 24 014 ~ Y005
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1 1
d03 = 30 F22,3 * 24104 ~ %005 » %30z = 70 F22,1 * 2s01 7 %500

i § -
d311 =70 F23,1 * %10 ¥ %01 T 9s00

(4.9)

-d

-1
43 * 30 F13,2 * %140 * doa1 0so

-1
4113 =70 F12,3 * %014 ¥ 4106 ~ Y005

1
d122 - 36'[6031F2 - 6F3.2 + 6(Sll - I)Fl’z 2F13,2

+ (5-1 - 2) - 60(21 - 1)F3 + 6(501 - b>?1.3

Fl1,2

+ 6F - (5.l - 3) 2 ]

2,3 Fl13~ 12,3

(4.10)

1
d212 ) [60l2F3 6?1’3 + 6(5.2 - l)?2.3 - 2!12’3

+ (5.z - 2)!-'22.3 - 60(:2 - l)l'1 + 6(5.2 - A)Fz.l

+ 6F3'l - (Ss, - 3”22,1 - zr23'll

1
d221 60 [603331 - 6?2.1 + 6(533 - I)F3.1 - 2F23’1

+ (533‘- 2) - 60(33 - l)F2 + 6(503 - 4)F

Fi3,1 3,2
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+ 6!1'2 - (Sl3 - f!)r:’_.".2 - 2!13.21
and:
(4.11)
!'1 - Q(Vi)
(4.12)
L _a_ge: vy
(4.13) 2
r, , =22 (v
ik, 1 ejek i
(4.14) T
_ Yy
' T
e e

and e = vt+l-v1 (wvhere index arithmetic is modulo 3).

Thps. the data in (4.11) are given positional values, the parameters in
(4.12) and (4.13) are derivatives (of the global interpolant) at vertices
which are to be determined so as to minimize a suitable functional defined
below, and the paramé:ers defined in (4.14) are projections of edges onto
other edges that engure global differentiability of the interpolant.

It is important to keep in mind that ultimately we wish to generate
derivative data (i.e. gradients and Hessians) at all vertices of a given

triangulation. The local interpolant Q {s most conveniently expressed in
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i.
terms of derivatives in the direction of edges (which would be inappropriate
on a neighboring triangle utilizing common vertex data). Hence we need to

i express edge derivatives in terms of partial derivatives in x and y . This
is accomplighed by writing:

n
(4.15) 8, = W(V,), B, = v°Q(V,)

ﬁ and

- T ' T

;“ (6.16) |4 meg, F meHe

S k,1 ki 3k, 1 Ji1k

ii We now proceed as in section 3. We consider the space B: of all

functions that can be expressed as Q;g on each triangle, and that are

glubally once continuously differentiable. (Notice that this set contains all

quartic polynomials, but only some quintic polynomials). The affine

space A: of interest is the set of all functions s in Bz that satisfy the

interpolation requirement

!;
(4.17) s(x ,y)=f (=F, 3¢ {1,2,3] on a particular triangle)
i1 i b ]
| N
We vant to minimize the functional Fk defined in (2.3) over Bz +« The
parameters at our disposal are the values of gradients and Hessians at the -
L

gridpoints (x1 "1) .

r. -22-
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In addition to the iteos coQorcd in general in section 4.1, we need to
differentiate the interpolant with respect to th; paraneters. As before, we
consider a single element, i.e. & single triangle. On each triangle, we have
15 parsmeters at our disposal. We denote by v = [v,] tha vector of these
paraseters. Because of the square under the integral in (2.3), the
contridbution ¢(v) , say to F¥ from a single triangle is a quadratic

function of v . This implies that we can write
1 7T T
Hv) = —vAv+gv+ec
2
vhere A 1is a symmetric positive senidefinite 15 by 15 matrix with entries
lij » 8 1s a vector with entries g, , and ¢ 1is a constant. The

contribution of ¢(v) to the global stiffness system is determined by A and

g - Since A 1is the Hessian of ¢(v) we can write

(4.19) a w30

Once the a j have been determined, the g can be computed by

substituting the unit vectors for v , thus

1
8 = e -za, -c
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(where e; 1s the unit vector with 1 4in the 1i-th place and zeros

elsevhere, and ¢ = ¢(0)). It is therefore crucial to be able to carry out

the differentiatién (4.19). Applying.the product rule twice yields

—

The differentiation of Q with respect to the entries of v can be carried

out by differentiating in the recursion formulas (4.3) and (4.4).

v pp—

Differentiating in (4.4) yields

3 L (4+1) o .y 3 (1)
w, dret (5-1) [a\v1 d41,s,e D341 01
3 (1)
+ ™, d; s+, Din1P2
_ 1)
* oy Yt D4y 53]

The recursion is initialized by differentiating in (4.3). The
derivatives can be derived easily from the recursions (4.6) through (4.16).

However, the situation 1s complicated by the fact that the interpolant is

expressed in terms of barycentric coordinates, whereas the derivatives
entering as data are cartesian derivatives. Computational efficiency can be
gained by observing that most of the derivatives obtained from (4.4) are zero, 1

and by avoiding having the program multiply by the zero derivatives. -
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For convenience, the non-sero derivatives are listed in the appendix,
They were computed using the symbol manipulation language REDUCE (see niarn.
1973). In order to avoid typing and type-setting errors, the REDUCE output

has been reproduced photographically.

~-25~

.

o

.'




5. BIVARIATE EXAMPLES

In this .ection. we illustrate the technique described in the preceding
sections by a oinple bivariate example. In a typical applgcation.
underlying primitive function will be available. However, for the sake of
i{llustration we use a primitive first introduced by Franke, 1982. The surface
exhibits several phenomena (two maxima, one minimum, and one saddle point)

that may occur in surface defined by a true dats set. The primitive function

is given by

£(x,y) = - ((9*’2) + (9y-2) )4

3 ~(OxrD2/49 + (9741)/10)
"'G

+_;_;((9:‘-7)2 + o33/

_1 _=((9x-0)2 + (9y-1%)
5‘

Approximations of f on the unit square wvere constructed from positional
values at only 36 points. Figure 1 shows a contour plot of f together with
the data points and the triangulation of the data. The triangulation was
constructed using Liftle's method described in Barnhill, 1977.

Figure 2 shows a hidden line plot of f . All subsequent plots are
drawvn as viewed from the same point and with the same vertical scale. Figures
3 through 6 show the interpolants obtained by minimizing the first through

fourth derivatives respectively. Minimizing second or third derivatives
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yields a very pleasing surface. The interpolant is somewhat shallower than
the primitive function. This is due to the fact that none of the data points
is placed directly'at,the extrema, (cf. PFigure 1.) wvhich are therefore
poorly represented by the interpolants.

Minimizing the gradient‘yields a surface that is unlikely to be useful
for design applications. However, it remarkably resembles a scene one might
encounter in a physical mountain range. It is intriguing to speculate that
minimizing the gradient may sometimes be appropriate for generating
topographical maps since erosion effects are the harsher the steeper the
terrain, Minimizing fourth derivatives generates large undulations and is not

a good general purpose method.
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Primitive Function - Contours and Triangulation

FIGURE 1
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Primitive Function
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Minimization of 1lst derivatives
FIGURE 3
-30-




|| MAGMED - WA ) DA

Minimization of 2nd derivatives

,
3
—
Lty
—tyf
y o cne o g
’ o — ve ; e e
1z > o s sy o o §

FIGURE 4

-31-




Minimization of 3rd derivatives

FIGURE 5
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CONCLUSIONS
A technique for derivative generation has bee proposed. It is

particularly useful in a multivariate context. Its main properties are:

l. The preprocessing stage of derivative generation requires the construction
and solution of a large linear system. However, this is closely related to
the finite element method, and existing well developed computational

techniques can be employed.
2. Once derivatives have been generated, the interpolant is local.

3. The formulas presented here apply to the univariate and the bivariaste case
onlz. However, conceptually the extension of the technique to other basic
interpolanto is straightforward. The particular interpolants considered in
this pcﬁet are piecewise polynomial functions. This is convenient since the
tcchniqug calls for the integration of functions with a similar structure as
the interpolant. In principle, interpolants with a non-polynomial structure
can also be used. They would necessitate either the development of special

integration formulas or the use of numerical (multivariate) integration.

4. Primarily, our technique is intended to be used as a means of constructing
visually pleasing surfaces. The special application described in section 3.
can be considered a bivariate Cl interpolation scheme that requires only

Co data. This is remarkable in view of the fact that most existing local
multivariate interpolation scheme require data of at least the same degree of
smoothness as the degree of smoothness of the interpolant. However, the

scheme also supplies values of derivatives at certain points. Thesge
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derivative values can be used for other purposes. For example, the gradients
and Hessians generated by minimizing our piecewise quintic C1 interpolant
can be used as data for the second of the two plecewise rational c?
interpolants described in Alfeld, 1984a. That interpolant would of course not

possess the minimization property of the polynomial interpolant.
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The following list is computer generated which accounts for the awkward

notation:

APPENDIX

Derivatives of the coefficients of Q with respect to the

derivative parameters

T 2 Qxx Qxy

Q = (ox,Qy] , Q=

1 2 3

T T

e = [elx,ely] , e = [e2x,e2y] , e
2

d = 4211, d = d121, 4

211 121

Only non—-zero derivatives are listed.

differentiation with regpect to Qx(vl):

d212:
d221:
d302:
d3ll:
d320:
d4o1:
d410:

(Ste2x*g2 ~ 4%e2x + e3x)/10
( - e2x + 5*edx*g3 - e3x)/10
( - 2%e2x)/5

( - e2x + e3x)/5

(2%e3x)/5

( - e2x)/5

e3x/$
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Qxy Qyy '

s =gl, s =52, 8 =g}

= [e3x,ely]

= d112

T

Q1

'.'
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differentiation with respect to Qy(vl):

d212:
d221:
d302;
da311:
d4320:
d401:
d410:

(S*e2y*s2 - 4*e2y + e3y)/10
( - €2y + S*ely*s3 - e3y)/10
( = 2*e2y)/5

( - e2y + e3y)/5

(2%e3y)/5

(- e2y)/5

e3y/5

differentiation with respect to Qxx(vl):

a212;
d221:
d302:
d311:
d320:

(e2x*( ~ S*e2x*s2 + 3%e2x - 2*e3x))/60
(e3x#( - 2%e2x + 5%e3x*s3 - 2%e3x))/60
elx**2/20

( = e2x*e3x)/20

eIx**2/20

differentiation with respect to Qxy(vl):

da212;
d221:
d302:
d311:
d320:

( = S%e2x®ely*s2 + 3*elx*ely - e2x*ely - e2y*e3x)/30
( -~ e2x*eldy - e2y*e3x + S*telx*ely*s3 - 2%e3x*ely)/30
(e2x*e2y)/10

( - (e2x*ely + e2y*e3x))/20

(e3x*e3y)/10

-40-

's!

V.’

'®



differentiation with respect to Qyy(vl):

d212:
d221;
d302:
d3ll:
d320:

(e2y*( - S*a2y*s2 + 3*e2y ~ 2%q3y))/60
(e3y*( = 2%e2y + Stely*g3 ~ 2%e3y))/60
e2y**2/20

( = e2y*eldy)/20

e3y**%2/20

differentiation with respect to Qx(v2):

d032:
d041:
d4122:
d13l:
d140:
d221:
d230;

(2%elx)/5

elx/5

(5*elx*gl - elx - e3x)/10
(elx - e3x)/5

( - e3x)/5

(elx + 5%e3x*s3 ~ 4%e3x)/10
( - 2#¢3x)/5

differentiation with respect to Qy(v2):

do32:
d041:
d122:
d131:
d140:
d221:
d230:

(2%ely)/S

ely/5

(5<ely*sl - ely - e3y)/10
(ely ~ e3y)/5

( - e3y)/s

(ely + S*edy*sl - 4%ely)/10
( - 2%e3y)/5
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difterentiation with respect to Qxx(v2):
d032:  elx#*2/20 : S
d122: (elx*(S*elx*sgl -~ 2%elx -~ 2%e3x))/60

d13l: ( - elx*e3x)/20

d221: (e3x*( ~ 2%elx ~ S*elx*s3 + 3%e3x))/60
d230: e3x**2/20

differentiation with respect to Qxy(v2):

d4032; (elx*ely)/10

d122; (5%elxtely*sl ~ 2%elx*ely - elx*ely - ely*e3dx)/30

d131:; ( = (elx*e3y + ely*e3dx))/20 —
P

d221: ( - elx*edy - ely*edx - 5%e3x*ely*s3 + 3I*elxtely)/30

d230:  (e3x*edy)/10 B

differentiation with respect to Qyy(v2):
d032: ely**2/20
d122; (ely*(5*ely*sl = 2%ely = 2%e3y))/60

Y-

N O

d131: ( - ely*eldy)/20
d221: (e3y*( - 2%ely - S*ely*s3 + 3%*e3y))/60
d230: = e3y**2/20
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differentiation with respect to Qx(v3):

dola:
d4023:
d104:;
d113:
d122;
d203:
d212:

( = elx)/5

( = 2%elx)/$

e2x/5

( - elx + e2x)/5

(5%elx*sl = 4%¢lx + ¢2x)/10
(2%e2x)/5

( - elx +.5*021*l2 - e2x)/10

differentiation with respect to Qy(v3):

d014:
d023:
d4104:
d1l3:
da122:;
d203:
d212:

differentiation with respect to Qxx(v3):

d4023:
dil3:
d122:
d203:
d212:

( - ely)/s

( = 2%ely)/S

e2y/5

( - ely + e2y)/S

(S*ely*s] - 4%ely + e2y)/10
(2%e2y)/5

( = ely + S*e2y*s2 - e2y)/10

elx**2/20
( - elx*e2x)/20

(elx*( ~ S5%elx*gl + 3Itelx - 2%e2x))/60

e2x**2/20

(e2x*( ~ 2%elx + S*e2x*s2 -~ 2%e2x))/60
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4
Vo
differentiation with respect to Qxy(vl): ]
4
d023:  (elx*ely)/10 ]
—

d113: ( = (elx*e2y + ely*e2x))/20 »

d122: ( = S*elx*ely*sl + 3%elxtely - elx*ely - ely*e2x)/30
4203: (e2x*e2y)/10
d212: ( = elxte2y - ely%e2x + Ske2x*ely*s2 - 2*e2x*ely)/30

differentiation with respect to Qyy(v3):

d023:  ely**2/20

da113: ( - ely*e2y)/20

d122: (ely*( ~ Stely*sl + 3tely - 2%e2y))/60
d203: e2y**2/20

d212; (e2y*( - 2%ely + Ste2y*s2 - 2%ely))/60
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